Font Size: a A A

Licancabur Volcano, Bolivia and life in the Atacama: Environmental physics and analogies to Mars

Posted on:2009-03-21Degree:Ph.DType:Dissertation
University:University of California, Los AngelesCandidate:Hock, Andrew NelsonFull Text:PDF
GTID:1442390005459986Subject:Geophysics
Abstract/Summary:
Although there is no perfect environmental analog to Mars on Earth, quantitative study of relevant terrestrial field sites can serve as the basis for physical models and technology development to aid future exploration. This dissertation describes original field and laboratory research on two terrestrial analog sites: Licancabur Volcano, Bolivia, and the Atacama Desert, Chile.;Atop Licancabur, at an elevation of nearly 6,000 meters above sea level, sits the highest volcanic lake on Earth. Prior to this work, little was known about the lake, its waters, the role of volcanism or its potential relationship to locales on Mars. In the first part of this work, I describe observations of the lake resulting from several years of field study, including data on meteorological conditions and solar irradiance. These and other measurements provide the basis for (1) the first quantitative mass and energy balance model of the lake, and (2) the first determination of the altitude effect on solar visible and ultraviolet flux from the high altitude summit. Under the observed conditions, model results indicate: lake waters are primarily meteoric in origin and evaporating rapidly; volcanic input is not required to explain observations of lake water temperature or year-end model results.;Nearby, Chile's Atacama Desert is known to be one of the driest, most inhospitable environments on Earth. There, environmental similarities to Mars provide an apt testing ground for new astrobiological exploration technologies. In the latter part of this work, I present results from my work with the Life In The Atacama (LITA) Mars rover field experiment. In particular, I report on the development of a new data analysis tool named the LITA Data Scoring System (DSS). Subject to the user-defined constraints, the DSS was used to facilitate targeting, analysis and mapping of rover science results relevant to potential habitability and evidence for life at three desert field sites. Although experimental in nature, the DSS demonstrated the utility of this type of tool for future astrobiology rovers.;The quantitative environmental and operational analogies to Mars are discussed in the conclusion, where they form the basis for recommendations on future avenues of research.
Keywords/Search Tags:Mars, Environmental, Atacama, Field, Life, Licancabur
Related items