Font Size: a A A

Enhancing the mechanical properties of cement paste by growing in-situ fiber reinforcement during hydration

Posted on:2009-08-22Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Constantinides, MargaritaFull Text:PDF
GTID:1442390002994566Subject:Engineering
Abstract/Summary:
Efforts to improve the mechanical properties of concrete by modifying the cement paste matrix have focused entirely on strength enhancement. But the intrinsic brittleness of the cement paste matrix limits the possible improvement in the mechanical properties of concrete, and in particular the toughness of the material. Increasing the toughness of the cement paste matrix could lead to a reduction in flaw sensitivity by delaying unstable crack propagation. Consequently, the resistance of the material to cracking due to drying shrinkage, thermal shrinkage, expansive deterioration processes, and applied loads could increase considerably.;The goal of this study was to grow in-situ fiber reinforcement in cement paste, a technique never before applied to cement-based materials, to enhance the toughness of the material. Ettringite, an existing, fiber-like hydration product was selected as the fiber reinforcement. Ettringite met all the necessary criteria to act as reinforcement in cement paste: adequate distribution in the matrix; adjustable volume fraction, aspect ratio and size; high stiffness along the fiber length; and finally compatibility with existing hydration products. Alkali-free accelerators were selected as the admixtures used to grow the ettringite in the cement paste.;X-ray diffraction and scanning electron microscopy experiments were performed to study the volume fraction, distribution, size, and morphology of the ettringite crystals in the cement paste matrix (both plain and accelerator-containing). Mechanical tests (compression, splitting tension, flexural, compact tension) were used to evaluate the effect of the accelerators on the strength and toughness of cement paste. Microindentations on the surface of the cement paste matrix were performed to study the morphology of the cracks and the toughening mechanisms taking place.;Through the characterization tests we identified that while more ettringite forms with the addition of the alkali-free accelerators, some of that ettringite forms in highly-porous inclusions distributed throughout the matrix. The compact tension specimen results showed that the accelerated specimens had a higher toughness and ductility compared to the control specimens. The dominant toughening mechanism identified was constrained microcracking, with the ettringite inclusions contributing to microcracking.
Keywords/Search Tags:Cement paste, Mechanical properties, Ettringite
Related items