Font Size: a A A

The development of performance-based wind engineering for residential structures: From concepts to application

Posted on:2011-06-07Degree:Ph.DType:Dissertation
University:Colorado State UniversityCandidate:Dao, Thang NguyenFull Text:PDF
GTID:1442390002469390Subject:Engineering
Abstract/Summary:
The majority of buildings and approximately 90% of residential structures in North America are light-frame wood construction. Many of these structures are subjected to high winds along the eastern seaboard and Gulf Coast and as a result routinely suffer damage resulting in significant financial losses. Losses for residential wood construction during hurricanes occur for a variety of reasons, i.e. from different sources. These include sources such as (a) the failure of structure due to high wind loading; (b) water intrusion as a result of high uplift pressures on the roof system resulting in gaps or as a result of a loss of roof coverings and/or roof sheathing panels; and (c) debris impact from windborne debris. A relatively new paradigm in earthquake engineering is performance-based design (PBD). PBD is, by and large, felt by most to be a system-level philosophy that allows inclusion of system level behavior including the improvement in performance as a result of this assertion. However, in wind engineering most failures are understood to be at the component and sub-assembly level. This study outlines and demonstrates the development of performance-based wind engineering for residential structures based on losses to the owner. To date, this is the first time a mechanistic model has been used to develop fragilities for performance expectations related to all levels of performance: occupant comfort, continued occupancy, life safety, structural integrity, and manageable loss.
Keywords/Search Tags:Residential structures, Wind engineering, Performance
Related items