Font Size: a A A

Three-dimensional unsteady simulation of a modern high pressure turbine stage: Analysis of heat transfer and flow

Posted on:2011-02-09Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Shyam, VikramFull Text:PDF
GTID:1442390002462346Subject:Engineering
Abstract/Summary:
This is the first 3-D unsteady RANS simulation of a highly loaded transonic turbine stage and results are compared to steady calculations and experiments. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. Phase-lag is used in the tangential direction to account for stator-rotor interaction. Due to the highly loaded characteristics of the stage, inviscid effects dominate the flowfield downstream of the rotor leading edge minimizing the effect of segregation to the leading edge region of the rotor blade. Unsteadiness was observed at the tip surface that results in intermittent 'hot spots'. It is demonstrated that unsteadiness in the tip gap is governed by both inviscid and viscous effects due to shock-boundary layer interaction and is not heavily dependent on pressure ratio across the tip gap. This is contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of a new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. Simulated heat flux and pressure on the blade and hub agree favorably with experiment and literature. The time-averaged simulation provides a more conservative estimate of heat flux than the steady simulation. The shock structure formed due to stator-rotor interaction is analyzed. A preprocessor has also been developed as a conduit between the unstructured multi-block grid generation software GridPro and the CFD code TURBO.
Keywords/Search Tags:Simulation, Stage, Heat, Pressure
Related items