Font Size: a A A

Development of LCF life prediction model for wrinkled steel pipes

Posted on:2011-12-12Degree:Ph.DType:Dissertation
University:University of Alberta (Canada)Candidate:Zhang, JianminFull Text:PDF
GTID:1442390002461733Subject:Engineering
Abstract/Summary:
This research program focused on the behaviour of low cycle fatigue (LCF) of wrinkled pipes, and was designed to develop the LCF life prediction models for the wrinkled pipes. It consisted of three phases of work, which are strip tests, full-scale pipe tests, and finite element analysis (FEA).;In full-scale pipe tests, two specimens were tested according to a complicated loading procedure. The loading was a combination of axial load, bending moment, and internal pressure; and it consisted of monotonic loading stage and cyclic loading stage. Based on those two tests, the global and local behaviour were investigated, the failure mechanism was studied and the application of the developed LCF life prediction models was discussed.;In FEA, three numerical models were developed and they were the strip model, the half-pipe model and the full-scale pipe model. In the strip model, the residual stresses and strains were analyzed and discussed. In the half-pipe model, the effects of pipe geometry, internal pressure, and global deformation on the wrinkle geometry were studied and discussed. In the full-scale pipe model, the full-scale pipe tests were simulated and both the global behaviour and local behaviour were discussed.;From this research program, some important conclusions were obtained. The wrinkle geometry is found to be greatly related to the pipe geometry, internal pressure, and global deformation. The global deformation has become localized after the wrinkle is fully developed. The opening deformation cycle is more detrimental to wrinkled pipes than the closing deformation cycle. The test results also show that the seam weld governs the failure of wrinkled pipes if the pipes are subjected to cyclic axial deformation. The LCF life prediction models developed from this research program demonstrate good prediction capacity when they are applied to both strip tests and full-scale pipe tests.;In strip tests, 39 strip specimens were tested by a complete-reversed stroke-controlled method to investigate the effects of bend angle, bend radius, and stroke range on the low-cycle fatigue (LCF) life. Also, the LCF behaviour was explored by viewing the spectra of key variables and their corresponding hysteresis loops. The failure mechanism was discussed by examining the fracture surfaces. Two LCF life prediction models, life-based and deterioration rate-based, were developed and their prediction results were evaluated.
Keywords/Search Tags:LCF life prediction, Pipe, Wrinkled, Research program, Developed, Behaviour
Related items