Font Size: a A A

Polymer -induced forces at interfaces

Posted on:2007-06-16Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Rangarajan, MuraliFull Text:PDF
GTID:1441390005975436Subject:Chemical Engineering
Abstract/Summary:
This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods.;Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces.;Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility of Listeria monocytogenes by treating actin filaments as elastic rods, using the actoclampin model. The results show qualitative agreement with calculations where the filaments are modeled as Hookean springs. The feasibility of the actoclampin model to address long length-scale rotation of Listeria during actin-based motility is addressed.
Keywords/Search Tags:Forces, Polymer, Lattice mean-field theories
Related items