Font Size: a A A

Investigation of select energetic materials by differential reflection spectrometry

Posted on:2008-12-16Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Fuller, Anna MarieFull Text:PDF
GTID:1441390005973803Subject:Engineering
Abstract/Summary:PDF Full Text Request
The presence of explosive or energetic materials is prevalent in today's world. Terrorists continue to target buildings and mass transit systems with explosive devices. The detection of these energetic materials is necessary to insure national security and welfare. Detection techniques such as X-ray scanners, Raman spectroscopy, Terahertz spectroscopy and ion mobility spectrometry are in current use or development; however, none of these are appropriate for all necessary applications. These techniques include. The present document provides an overview of the current detection techniques and describes a new technique for detecting energetic materials called differential reflection spectrometry (DRS).;DRS essentially measures the optical absorption of energetic materials. The use of DRS has led to the discovery of previously unreported optical characteristics for some energetic compounds that are unique to the individual material. These optical characteristics consist of absorption shoulders between 270 and 420 nm, e.g. near 420 nm for 2, 4, 6 trinitrotoluene (TNT). In the presented research, the origin of the differential reflection spectra obtained was investigated using several techniques including UV-Visible spectrophotometry (transmission and reflection) and computer molecular modeling. Experimental DRS spectra of TNT, hexahydro-1,3,5 trinitro-1,3,5 triazine (RDX), octahydro 1,3,5,7-tetranitro-1,3,5,6 tetrazocine (HMX), 18 pentaerythritol tetranitrate (PETN), and 2, 4, 6, n-tetranitro-n-methylaniline (Tetryl) were taken and analyzed. From the experimental results and verification by molecular modeling, it was found that the absorption features observed in the redder region of the UV range (270--420 nm) are due to molecular orbital transitions in the nitro (NO2) groups of the measured explosives. These transitions only occur in specific conditions, such as high concentration solutions and solids, where the normally forbidden transitions are allowed.;The unique optical characteristics of the energetic materials presented in this dissertation are observed only in the solid or relatively high concentrated states suggesting the interaction of several molecules. Therefore these absorption features are proposed to be due to a charge transfer self-complex. This phenomenon can be interpreted in the same manner as the accumulation of atoms and be modeled using quantum mechanics.
Keywords/Search Tags:Energetic materials, Differential reflection, DRS
PDF Full Text Request
Related items