Font Size: a A A

Field and laboratory studies of atmospheric reactive mercury: Gas-particle partitioning and sources

Posted on:2008-04-16Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Rutter, Andrew PhilipFull Text:PDF
GTID:1441390005973678Subject:Chemistry
Abstract/Summary:
Certain aspects of atmospheric reactive mercury (RM) source-receptor relationships are not well understood. The objective of this dissertation was to improve the understanding of these relationships in the following areas: (i) gas-particle partitioning, and; (ii) the local impacts of RM source emissions.; A novel aerosol reactor was developed to study gas-particle partitioning of RM using synthetic atmospheric aerosol containing picogram concentrations of RM. The RM in the aerosol was collected in an offline mode with filters and sorbent, and analyzed with Thermal Desorption Analysis (TDA). The offline-TDA collection and analysis method was compared with a commercial real time ambient mercury analyzer and two wet analysis methods using ambient measurements. The offline-TDA method performed well in comparison to the established techniques.; The dependencies of gas-particle partitioning coefficients upon temperature and particle composition were determined and parameterized from field studies and laboratory experiments. The volatility of RM increased with ambient temperature in urban aerosol and laboratory aerosol of ammonium sulfate and adipic acid. The dependence of RM gas-particle partitioning on particle composition were determined using synthetic atmospheric aerosol generated in the laboratory. RM partitioned predominantly to the particle phase in particles of sodium nitrate, sodium chloride and potassium chloride, but was much more volatile in particles made of ammonium sulfate, levoglucosan and adipic acid.; The impacts of RM sources on local receptors were studied in southern Wisconsin and Mexico City. RM measurements were made over a year in Milwaukee, WI (urban) and Devil's Lake State Park, WI (rural). An urban excess of all three mercury species was detected in Milwaukee, WI. The urban excess was attributed to a higher density of mercury emissions in the Milwaukee, WI-Chicago, IL area. The impact of local sources of RM on both sites was found to dominate the atmospheric concentrations.; PHg and RGM measurements were made in Mexico City over 2.5 weeks. Diurnal concentration variations with nocturnal maxima pointed to nightly transport of air into the city from the industrial area to the north. RM partitioned predominantly to the particle phase in most of the plumes.
Keywords/Search Tags:Gas-particle partitioning, Atmospheric, Mercury, Laboratory
Related items