Font Size: a A A

Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

Posted on:2010-11-27Degree:Ph.DType:Dissertation
University:University of Arkansas at Little RockCandidate:Bourdo, Shawn EdwardFull Text:PDF
GTID:1441390002975610Subject:Chemistry
Abstract/Summary:
Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure.;The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating.;The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from Raman spectroscopy, X-ray diffraction, and thermal analysis suggesting a more crystalline graphite matrix due to intimate interactions with PANI that resulted in a charge transfer. Confirmation of charge transfer was observed through magnetic susceptibility, electron paramagnetic resonance, and temperature dependent electrical conductivity studies.
Keywords/Search Tags:Inherently conducting, Carbon, Conductive, Composites, Materials, Conductivity
Related items