Font Size: a A A

Molecular Relaxations in Constrained Nanoscale Systems

Posted on:2011-09-24Degree:Ph.DType:Dissertation
University:University of WashingtonCandidate:Knorr, Daniel B., JrFull Text:PDF
GTID:1441390002960291Subject:Engineering
Abstract/Summary:
Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide future molecular engineering.
Keywords/Search Tags:Molecular, Materials, Engineering, Relaxation, NLO, Systems
Related items