Font Size: a A A

Remote sensing of the surface layer dynamics of a stratified lake

Posted on:2009-10-17Degree:Ph.DType:Dissertation
University:University of California, DavisCandidate:Steissberg, Todd EugeneFull Text:PDF
GTID:1441390002493117Subject:Hydrology
Abstract/Summary:
Physical processes, such as upwelling, circulation, and small-scale eddies, affect aquatic ecosystem functioning, controlling nutrient and light availability and pollutant transport in inland and coastal waters. These processes can be characterized and tracked across time and space using a combination of thermal infrared and reflective-solar (visible light) satellite measurements. Thermal gradients, created and altered by physical processes, facilitate daytime and nighttime detection and tracking of upwelling fronts, surface jets, basin-scale gyres, and small-scale eddies. Similarly, sunglint patterns in reflective-solar satellite measurements are altered by internal waves, current shear, and rotation, improving delineation of fronts, jets, and eddies, and determination of transport direction or rotational characteristics.;This study applied thermal infrared and reflective-solar satellite images and field measurements, collected across multiple spatial and temporal scales, to characterize upwelling, circulation, and eddies at Lake Tahoe, California-Nevada. This included developing a novel technique to improve the quality of moderate-resolution satellite temperature data, creating filtered, calibrated Water Skin Temperature (WST) maps that clearly delineate thermal features, while preserving nearshore data and temperature accuracy. Time series of filtered WST maps acquired by two moderate-resolution satellite sensors were used to track up-welling fronts and jets, which can recur at moderate wind speeds when wind forcing is in phase with internal wave motion.;High-resolution temperature and sunglint maps were used to characterize several, small-scale "spiral eddies" at Lake Tahoe. These features, although common in the ocean, have not been documented before in lakes. Satellite measurements showed spiral eddies form along thermal fronts and shear zones at Lake Tahoe, rotating predominantly cyclonically, as in the ocean, with sub-inertial periods longer than 21 hours. In situ velocity profiles of a cool-core eddy revealed elevated velocities up to 12 cm/s throughout the surface mixed layer, rotating with depth in an Ekman spiral. Average upward vertical velocities approaching 0.58 cm/s indicated Ekman pumping and enhanced stability. A time series of moderate-resolution WST maps confirmed the eddy's stability, showing it persisted 3.5 days until it abruptly disintegrated, spreading its contents across the surface layer. The findings suggest upwelling and eddies contribute to the patchiness of the surface layer.
Keywords/Search Tags:Surface layer, Eddies, Upwelling, Lake
Related items