Font Size: a A A

Development of an environmentally benign anticorrosion coating for aluminum alloy using green pigments and organofunctional silanes

Posted on:2010-02-10Degree:Ph.DType:Dissertation
University:University of CincinnatiCandidate:Yin, ZhangzhangFull Text:PDF
GTID:1441390002474797Subject:Engineering
Abstract/Summary:PDF Full Text Request
Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Current protection measurement employs substantial use of chromate and high VOC organics, both of which are identified as environment and health hazards. The approach of this study is to utilize a combination of organofunctional silanes and a compatible inhibitor integrated into high-performance waterborne resins. First, an extensive pigment screening has been done to find replacements for chromates using the testing methodology for fast corrosion inhibition evaluation and pigment. Zinc phosphate and calcium zinc phosphomolybdate were found to have the best overall performance on Al alloys. Some new corrosion inhibitors were synthesized by chemical methods or modified by plasma polymerization for use in the coatings. Low-VOC, chromate-free primers (superprimer) were developed using these pigments with silane and acrylic-epoxy resins. The developed superprimer demonstrated good corrosion inhibition on aluminum substrates.The functions of inhibitor and silane in the coating were investigated. Both silane and inhibitor are critical for the performance of the superprimer. Silane was found to improve the adhesion of the coating to the substrate and also facilitate corrosion prevention. Addition of zinc phosphate to the coating improved the resistance of a scratched area against corrosion. The microstructure of the acrylic-epoxy superprimer coating was studied. SEM/EDAX revealed that the superprimer has a self-assembled stratified double-layer structure which accounts for the strong anti-corrosion performance of the zinc phosphate pigment. Zinc phosphate leaches out from the coating to actively protect the scratched area. The leaching of pigment was confirmed in the ICP-MS analysis and the leaching rate was measured. Coating-metal interface and the scribe of coated panels subjected to corrosion test was studied. ToF-SIMS studies confirmed the presence of silane at the interface and the hydrolysis of the silane. The abundant presence of silane was believed to improve the adhesion and also facilitate the corrosion prevention.The protection mechanism of the acrylic-epoxy superprimer was proposed. The self-assembled double-layer structure of the acrylic-epoxy superprimer consist of a less-penetrable hydrophobic layer (epoxy-dominated) on the top and a hydrophilic layer (acrylic-dominated) accommodating the inhibitors underneath. This unique structure of the acrylic-epoxy accounts for the good protection of the coating. Furthermore, the inhibition mechanism of zinc phosphate was explored and compared to those which have been reported. Based on the protection mechanism of the superprimer, electrodeposition was explored in order to achieve a more organized coating with a better engineered metal/coating interface. The electrodeposited coatings were found to have higher barrier property and anticorrosion performance.
Keywords/Search Tags:Corrosion, Coating, Silane, Aluminum, Pigment, Zinc phosphate, Using, Superprimer
PDF Full Text Request
Related items