Font Size: a A A

Thin zinc oxide and cuprous oxide films for photovoltaic applications

Posted on:2011-07-23Degree:Ph.DType:Dissertation
University:University of MinnesotaCandidate:Jeong, SeongHoFull Text:PDF
GTID:1441390002459870Subject:Alternative Energy
Abstract/Summary:
Metal oxide semiconductors and heterojunctions made from thin films of metal oxide semiconductors have broad range of functional properties and high potential in optical, electrical and magnetic devices such as light emitting diodes, spintronic devices and solar cells. Among the oxide semiconductors, zinc oxide (ZnO) and cuprous oxide (Cu2O) are attractive because they are inexpensive, abundant and nontoxic. As synthesized ZnO is usually an intrinsic n - type semiconductor with wide band gap (3.4 eV) and can be used as the transparent conducting window layer in solar cells. As synthesized Cu2O is usually a p - type semiconductor with a band gap of 2.17 eV and has been considered as a potential material for the light absorbing layer in solar cells. I used various techniques including metal organic chemical vapor deposition, magnetron sputtering and atomic layer deposition to grow thin films of ZnO and Cu2O and fabricated Cu2O/ZnO heterojunctions. I specifically investigated the optical and electrical properties of Cu 2O thin films deposited on ZnO by MOCVD and showed that Cu2O thin films grow as single phase with [110] axis aligned perpendicular to the ZnO surface which is (0001) plane and with in-plane rotational alignment due to (220)Cu2O || (0002)ZnO; [001]Cu 2O || [1210]ZnO epitaxy. Moreover, I fabricated solar cells based on these Cu2O/ZnO heterojunctions and characterized them. Electrical characterization of these solar cells as a function of temperature between 100 K and 300 K under illumination revealed that interface recombination and tunneling at the interface are the factors that limit the solar cell performance. To date solar cells based on Cu2O/ZnO heterojunctions had low open circuit voltages (~ 0.3V) even though the expected value is around 1V. I achieved open circuit voltages approaching 1V at low temperature (~ 100 K) and showed that if interfacial recombination is reduced these cells can achieve their predicted potential.
Keywords/Search Tags:Oxide, Films, Thin, Cells, Heterojunctions
Related items