Font Size: a A A

The effects of circumstellar gas on terrestrial planet formation: Theory and observation

Posted on:2008-05-14Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Mandell, Avram MFull Text:PDF
GTID:1440390005971421Subject:Physics
Abstract/Summary:
Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming.;I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars.;I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable.;Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in the inner circumstellar regions of two Herbig Ae stars, AB Aurigae and MWC 758. I analyze the temperature of the emitting gas by constructing rotational diagrams, showing that the temperature of the gas in both systems is approximately 700K. I calculate a secure abundance of emitting OH molecules in the upper vibrational state, and discuss the ramifications of various excitation processes on the extrapolation to the total number of OH molecules. I also calculate an inner radius for the emitting gas, showing that the derived Rin is equivalent to that found by near-IR imaging. I compare these results to models of circumstellar disk chemistry as well as observations of other chemical diagnostics, and discuss further improvements to excitation models that are necessary to fully understand the formation and thermal conditions of the detected OH gas.;One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems.
Keywords/Search Tags:Planet, Gas, Terrestrial, Circumstellar, Effects, Systems, Evolution, Formation
Related items