Neutrino and gamma-ray signatures of supernova explosions | | Posted on:2008-03-31 | Degree:Ph.D | Type:Dissertation | | University:University of Minnesota | Candidate:Lu, Yu | Full Text:PDF | | GTID:1440390005967589 | Subject:Physics | | Abstract/Summary: | PDF Full Text Request | | A supernova occurs when the core of a massive star collapses into a compact neutron star. Nearly all the gravitational binding energy of the neutron star is emitted in neutrinos. This is approximately 100 times larger than the explosion energy as measured by the total energy of the ejecta. A prevalent paradigm is that a fraction of the neutrino energy is absorbed by the material above the neutron star, thereby delivering the explosion. We test this neutrino driven supernova mechanism by analyzing the signal induced by supernova electron antineutrinos in terrestrial detectors such as SuperKamiokande. We perform detailed Monte Carlo simulations of such signals and identify the potential signatures of this mechanism by comparing the event rates and energy spectra before and after explosion.; Before the neutrinos reach terrestrial detectors, a fraction of them interact with protons and nuclei in the supernova envelope. Some of these interactions result in gamma-ray emission. The gamma-rays produced in the outmost layer escape and may be detected. We calculate the time evolution for the fluxes of gamma-rays produced by neutron capture on protons and positron annihilation following the absorption of electron antineutrinos on protons. Because these gamma-rays are produced before the supernova shock arrives at the envelope, their detection can help identify the supernova before it is seen optically. In addition, they may provide a useful probe of the conditions in the surface layer of the supernova progenitor. | | Keywords/Search Tags: | Supernova, Neutron star, Neutrino, Explosion | PDF Full Text Request | Related items |
| |
|