Font Size: a A A

Muon spin relaxation and rotation studies of the filled skutterudite alloys praseodymium osmium ruthenium antimonide and praseodymium lanthanum osmium antimonide

Posted on:2008-02-17Degree:Ph.DType:Dissertation
University:University of California, RiversideCandidate:Shu, LeiFull Text:PDF
GTID:1440390005475074Subject:Physics
Abstract/Summary:
Some filled skutterudite compounds have recently been found to exhibit very interesting properties. The first Pr-based heavy-fermion superconductor, PrOs4Sb12, is an intriguing material due to the unusual properties of both its normal and superconducting states. Comprehensive muon spin rotation and relaxation studies and magnetic susceptibility measurements, described in this dissertation, have been performed to investigate the microscopic properties of PrOs4Sb12 and its Ru and La doped alloys.;The temperature dependence of penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) is weaker than those measured by radiofrequency measurements. A scenario based on two-band superconductivity in PrOs4Sb 12, is proposed to resolve this difference. TF-muSR experiments also suggest the suppression of superfluid density with Ru doping, probably due to impurity scattering. In addition, magnetic susceptibility data as well as analysis of the muSR data in PrOs4Sb12 reveal a nearly linear relation of mu+ Knight shift vs. magnetic susceptibility. This suggests that the muon charge does not affect the crystalline electric field splitting of Pr3+ near neighbors. Additional evidence comes from the fact that the superconducting transition temperature Tc measured from muSR is consistent with the bulk superconducting values.;Zero-field muon spin relaxation (ZF-muSR) experiments have been carried out in the Pr(Os1-xRux) 4Sb12 and Pr1-yLayOs 4Sb12 alloy systems to investigate the time-reversal symmetry (TRS) breaking found in an earlier ZF-muSR study of the end compound PrOs 4Sb12. The results from measurements at KEK, Japan, suggest that Ru doping is considerably more efficient than La doping in suppressing TRS breaking superconducting in PrOs4Sb12. However, we think that the spontaneous local field that indicates TRS breaking detected by ZF-muSR may depend on sample quality if those fields are from inhomogeneity in the superconducting order parameter, since our ZF-muSR experiment detects nonzero spontaneous fields for Pr(Os0.9Ru0.1)4 Sb12 from measurement at ISIS, United Kingdom in different samples.;Longitudinal-field muon spin relaxation experiments also have been carried out to elucidate the anomalous dynamic muon spin relaxation detected by ZF-muSR in those alloys. The dynamic muon relaxation found in the alloys appears to be due to 141Pr nuclear spin fluctuations, where the 141Pr moments are enhanced by hyperfine coupling to the Pr 3+ Van Vleck susceptibility.
Keywords/Search Tags:Muon spin relaxation, Alloys, Pros4sb12, Rotation, Susceptibility
Related items