Font Size: a A A

Novel computational methods for mass spectrometry based protein identification

Posted on:2011-04-17Degree:Ph.DType:Dissertation
University:University of CincinnatiCandidate:Jain, RachanaFull Text:PDF
GTID:1440390002964744Subject:Engineering
Abstract/Summary:
Mass spectrometry (MS) is used routinely to identify proteins in biological samples. Peptide Mass Fingerprinting (PMF) uses peptide masses and a pre-specified search database to identify proteins. It is often used as a complementary method along with Peptide Fragment Fingerprinting (PFF) or de-novo sequencing for increasing confidence and coverage of protein identification during mass spectrometric analysis. At the core of a PMF database search algorithm lies a similarity measure or quality statistics that is used to gauge the level to which an experimentally obtained peaklist agrees with a list of theoretically observable mass-to-charge ratios for a protein in a database. In this dissertation, we use publicly available gold standard data sets to show that the selection of search criteria such as mass tolerance and missed cleavages significantly affects the identification results. We propose, implement and evaluate a statistical (Kolmogorov-Smirnov-based) test which is computed for a large mass error threshold thus avoiding the choice of appropriate mass tolerance by the user. We use the mass tolerance identified by the Kolmogorov-Smirnov test for computing other quality measures. The results from our careful and extensive benchmarks suggest that the new method of computing the quality statistics without requiring the end-user to select a mass tolerance is competitive. We investigate the similarity measures in terms of their information content and conclude that the similarity measures are complementary and can be combined into a scoring function to possibly improve the over all accuracy of PMF based identification methods.;We describe a new database search tool, PRIMAL, for protein identification using PMF. The novelty behind PRIMAL is two-fold. First, we comprehensively analyze methods for measuring the degree of similarity between experimental and theoretical peaklists. Second, we employ machine learning as a means of combining the individual similarity measures into a scoring function. Finally, we systematically test the efficacy of PRIMAL in identifying proteins using highly curated and publicly available data. Our results suggest that PRIMAL is competitive if not better than some of the tools extensively used by the mass spectrometry community. A web server with an implementation of the scoring function is available at http://bmi.cchmc.org/primal.;We also note that the methodology is directly extensible to MS/MS based protein identification problem. We detail how to extend our approaches to the more complex MS/MS data.
Keywords/Search Tags:Protein, Mass, Spectrometry, PMF, Methods, Used, PRIMAL
Related items