Font Size: a A A

Reconstruction of cluster masses using particle based lensing

Posted on:2011-07-04Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Deb, SanghamitraFull Text:PDF
GTID:1440390002954560Subject:Physics
Abstract/Summary:
Clusters of galaxies are among the richest astrophysical data systems, but to truly understand these systems, we need a detailed study of the relationship between observables and the underlying cluster dark matter distribution. Gravitational lensing is the most direct probe of dark matter, but many mass reconstruction techniques assume that cluster light traces mass, or combine different lensing signals in an ad hoc way. In this talk, we will describe "Particle Based Lensing" (PBL), a new method for cluster mass reconstruction, that avoids many of the pitfalls of previous techniques. PBL optimally combines lensing information of varying signal-to-noise, and makes no assumptions about the relationship between mass and light.;We will describe mass reconstructions in three very different, but very illuminating cluster systems: the "Bullet Cluster" (lE 0657-56), A901/902 and A1689. The "Bullet Cluster" is a system of merging clusters made famous by the first unambiguous lensing detection of dark matter. A901/902 is a multi-cluster system with four peaks, and provides an ideal laboratory for studying cluster interaction. We are particularly interested in measuring and correlating the dark matter clump ellipticities. A1689 is one of the richest clusters known, and has significant substructure at the core. It is also my first exercise in optimally combining weak and strong gravitational lensing in a cluster reconstruction. We find that the dark matter distribution is significantly clumpier than indicated by X-ray maps of the gas. We conclude by discussing various potential applications of PBL to existing and future data.
Keywords/Search Tags:Cluster, Lensing, Mass, Reconstruction, PBL, Dark matter
Related items