Font Size: a A A

Lost mold-rapid infiltration forming: Strength control in mesoscale 3Y-TZP ceramics

Posted on:2011-09-08Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Antolino, Nicholas EFull Text:PDF
GTID:1440390002952808Subject:Nanotechnology
Abstract/Summary:
The strength of nanoparticulate enabled microdevices and components is directly related to the interfacial control between particles and the flaws introduced as these particles come together to form the device or component. One new application for micro-scale or meso-scale (10's microm to 100's microm) devices is surgical instruments designed to enter the body, perform a host of surgeries within the body cavity, and be extracted with no external incisions to the patient. This new concept in surgery, called natural orifice transluminal endoscopic surgery (NOTES), requires smaller and more functional surgical tools. Conventional processing routes do not exist for making these instruments with the desired size, topology, precision, and strength. A process, called lost mold-rapid infiltration forming (LM-RIF), was developed to satisfy this need. A tetragonally stabilized zirconia polycrystalline material (3Y-TZP) is a candidate material for this process and application because of its high strength, chemical stability, high elastic modulus, and reasonably high toughness for a ceramic.Modern technical ceramics, like Y-TZP, are predicated on dense, fine grained microstructures and functional mesoscale devices must also adhere to this standard. Colloid and interfacial chemistry was used to disperse and concentrate the Y-TZP nanoparticles through a very steep, yet localized, potential energy barrier against the van der Waals attractive force. The interparticle interaction energies were modeled and compared to rheological data on the suspension. At high concentrations, the suspension was pseudoplastic, which is evidence that a structure was formed within the suspension that could be disrupted by a shearing force. The LM-RIF process exploits this rheological behavior to fill mold cavities created by photolithography. The premise of the LM-RIF process is to process the particulate material into a dense ceramic body while the unsintered mesoscale parts are supported en masse by a substrate. Numerous challenges were overcome that relate to the application of photoresist on a refractory substrate capable of withstanding the high temperatures needed to sinter the ceramic parts. Strength of approximately 1 GPa was achieved for the first parts produced, which demonstrated the feasibility of the LM-RIF process.Although respectable, a 1GPa strength is not as strong as would be predicted based on the small size (332 x 26 x 17 microm) of the parts. An effort to identify and eliminate the largest flaws in the specimen produced by the LM-RIF process was undertaken, which ultimately increased the average strength to 2.35 GPa. Geometric defects, previously unreported in ceramic microfabrication techniques, were degrading the strength of the early parts. An in-depth characterization of these defects by optical profilometry and then eliminating the underlying cause was the key to obtaining this high strength. One interesting phenomena discovered in this work was the role that the substrate plays in the sintering of the ceramic part through the enhanced diffusion pathways created by the more intimate contact of the mesoscale parts compared to macroscale analogs. Impurities of alumina and silica were found to adversely affect the sintering kinetics of mesoscale parts causing localized grain growth or exaggerated grain growth depending on the sintering conditions.The role that the microstructure, specifically the grain size, plays in determining the strength versus the role that the surface flaw population plays, as characterized by the surface roughness, was determined through isothermal sintering experiments. It was found that the strength of mesoscale ceramics lies in the transition region between the flaw-dominated stress intensity effect and the Hall-Petch microstructural effect. This proves that processing science and microstructural refinement about equally determine the strength of particulate based mesoscale materials.The hierarchical approach that was used to marry the development of the LM-RIF process to the mechanical design and optimization of surgical instruments is described. This approach used nested iteration loops to refine both the design and fabrication processes to create and test surgical instrument prototypes. These prototypes as well as some of the unique shapes possible with the LM-RIF process are presented.
Keywords/Search Tags:Strength, LM-RIF process, Mesoscale, Ceramic, Surgical
Related items