Font Size: a A A

High electric field deuterium ion sources for neutron generators

Posted on:2010-04-03Degree:Ph.DType:Dissertation
University:The University of New MexicoCandidate:Reichenbach, BirkFull Text:PDF
GTID:1440390002486324Subject:Physics
Abstract/Summary:
Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips.;Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips.;Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied.;The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ∼ 2 V/A to ∼ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and carbon monoxide is observed at fields exceeding ∼1 V/A. In vacuo heating of the arrays to temperatures of the order of 800°C can be effective in removing many of the surface contaminants observed.;For both the field desorption and the field evaporation approaches further improvements to array design and fabrication are required if arrays are to provide sufficient deuterium ion currents to produce 109 to 1010 n/cm2 of tip array area for the detection systems.
Keywords/Search Tags:Ion, Deuterium, Field, Neutron, Sources, Tip, V/A
Related items