Font Size: a A A

Lithosphere deformation methods and models constrained by surface fault data on Mars

Posted on:2010-02-16Degree:Ph.DType:Dissertation
University:State University of New York at Stony BrookCandidate:Dimitrova, Lada LFull Text:PDF
GTID:1440390002481202Subject:Geophysics
Abstract/Summary:
Models of lithospheric deformation tie observed field measurements of gravity and topography with surface observations of tectonic features. An understanding of the sources of stress, and the expected style, orientation, and magnitudes of stress and associated elastic strain is important for understanding the evolution of faulting on Mars and its relationship to loading. At the same time, theoretical models of deformation mechanisms and forces, when tied to tectonic observations, can be interpreted in terms of major tectonic events and allow insights into the planet's history and evolution as well as its internal structure and processes. This is particularly important for understanding solid planetary bodies other than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g. Mars. This kind of research has implications for, and benefits from, an understanding of the petrology and surface processes.;In this work, I use MGS MOLA and Radio Science data products (topography and gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics on Mars as a function of time, while satisfying geologic surface observations (surface features) that have been and are being catalogued and studied from Viking, MOLA, MOC, and THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects), (2) loading from the surface and base of lithosphere, and the effects of this loading on membrane and flexural strains and stresses, and (3) the role of global contraction, all viewed in the context of how the surface elastic layer has changed as the planet has evolved. I show that deviatoric stresses associated with gravitational potential differences do a good job at matching the normal faults; however, fitting all the surface-breaking faults is more difficult. I argue that global planetary contraction is an unlikely source of significant deformation. Instead, the simplest inverse models show that small lateral variations (1¡6%) in crust and mantle density in conjunction with small vertical displacement, O(100m), provide sufficient additional GPE and membrane stress to fit the majority of the data. These inverse models are consistent with lithosphere modification by erosion from running water.
Keywords/Search Tags:Models, Surface, Lithosphere, Deformation, Data, Mars, Understanding
Related items