Font Size: a A A

Advanced Monte Carlo methods for analysis of very high temperature reactors: On-the-fly Doppler broadening and deterministic/Monte Carlo methods

Posted on:2010-07-22Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Yesilyurt, GokhanFull Text:PDF
GTID:1440390002478170Subject:Engineering
Abstract/Summary:
Two of the primary challenges associated with the neutronic analysis of the Very High Temperature Reactor (VHTR) are accounting for resonance self-shielding in the particle fuel (contributing to the double heterogeneity) and accounting for temperature feedback due to Doppler broadening. The double heterogeneity challenge is addressed by defining a "double heterogeneity factor" (DHF) that allows conventional light water reactor (LWR) lattice physics codes to analyze VHTR configurations. The challenge of treating Doppler broadening is addressed by a new "on-the-fly" methodology that is applied during the random walk process with negligible impact on computational efficiency. Although this methodology was motivated by the need to treat temperature feedback in a VHTR, it is applicable to any reactor design.;The on-the-fly Doppler methodology is based on a combination of Taylor and asymptotic series expansions. The type of series representation was determined by investigating the temperature dependence of U238 resonance cross sections in three regions: near the resonance peaks, mid-resonance, and the resonance wings. The coefficients for these series expansions were determined by regressions over the energy and temperature range of interest. The comparison of the broadened cross sections using this methodology with the NJOY cross sections was excellent. A Monte Carlo code was implemented to apply the combined regression model and used to estimate the additional computing cost which was found to be less than 1%.;The DHF accounts for the effect of the particle heterogeneity on resonance absorption in particle fuel. The first level heterogeneity posed by the VHTR fuel particles is a unique characteristic that cannot be accounted for by conventional LWR lattice physics codes. On the other hand, Monte Carlo codes can take into account the detailed geometry of the VHTR including resolution of individual fuel particles without performing any type of resonance approximation. The DHF, basically a self shielding factor, was found to be weakly dependent on space and fuel depletion. The DHF only depends strongly on the packing fraction in a fuel compact. Therefore, it is proposed that DHFs be tabulated as a function of packing fraction to analyze the heterogeneous fuel in VHTR configuration with LWR lattice physics codes.
Keywords/Search Tags:VHTR, Temperature, Lattice physics codes, Monte carlo, Doppler broadening, Reactor, Fuel, LWR
Related items