Font Size: a A A

Dissipative quantum molecular dynamics in gases and condensed media: A density matrix treatment

Posted on:2010-01-31Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Leathers, Andrew SFull Text:PDF
GTID:1440390002475632Subject:Chemistry
Abstract/Summary:
We present a study of dissipative quantum molecular dynamics, covering several different methods of treating the dissipation. We use a reduced density matrix framework, which leads to coupled integro-differential equations in time. We then develop a numerical algorithm for solving these equations. This algorithm is tested by comparing the results to a solved model.;The method is then applied to the vibrational relaxation of adsorbates on metal surfaces. We also use this model to test approximations which transform the integro-differential equations into simpler integral equations. Our results compare well to experiment, and demonstrate the need for a full treatment without approximations. This model is then expanded to allow for electronic relaxation, as well as excitation by a light pulse. The electronic relaxation occurs on a different time scale, and is treated differently than the vibrational relaxation. Our method is shown to be general enough to handle both cases.;Our next model is light-induced electron transfer in a metal cluster on a semiconductor surface. We consider both direct electronic excitation causing electron transfer, as well as indirect transfer, where there is excitation to an intermediate state which is coupled to the electron transferred state. Our results indicate vibrational relaxation plays a small role in the direct transfer dynamics, but is still important in the indirect case.;Finally, we present a mixed quantum-classical study of the effect of initial conditions, with the goal of moving towards a method capable of treating dissipation in both quantum and mixed quatum-classical systems. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)...
Keywords/Search Tags:Quantum, Dynamics
Related items