Font Size: a A A

Patterns of tree establishment and vegetation composition in relation to climate and topography of a subalpine meadow landscape, Jefferson Park, Oregon, USA

Posted on:2011-01-20Degree:Ph.DType:Dissertation
University:Oregon State UniversityCandidate:Zald, Harold S. JFull Text:PDF
GTID:1440390002468907Subject:Biology
Abstract/Summary:
The forest alpine tundra ecotone (FTE, also known as alpine treeline or subalpine parkland), is a conspicuous feature of mountain landscapes throughout the world. This dissertation attempts to overcome many of the limitations in FTE research by taking a landscape approach to develop a greater understanding of past spatiotemporal patterns of tree invasion, current spatial patterns of vegetation composition and structure, and potential future patterns of climate-driven tree invasion in the FTE. The setting for this research is Jefferson Park, a 260 ha subalpine parkland landscape in the Oregon High Cascades, USA.;In chapter two, I generated fine-scale spatially-explicit predictions of current vegetation composition, structure, and tree ages in the Jefferson Park study area. Predictive mapping of vegetation attributes was accomplished using gradient analysis with nearest neighbor imputation; integrating field plots, multispectral SPOT 5 satellite imagery, and LiDAR data. Vegetation composition was best described by SPOT 5 imagery and LiDAR-derived topography, while vegetation structure was best described by LiDAR-derived vegetation heights. Predictions of species occurrence were most accurate for tree species, moderate for shrub species and vegetation groups, and highly variable for graminoid species. Predictive mapping of vegetation structure variables such as basal area and stand density were subject to large amounts of error, possibly resulting from scale incompatibilities between vegetation patterns and plot size, and/or heterogeneous FTE landscapes where forest structure does not develop along consistent trajectories with stand age. This study suggests integrating multispectral satellite imagery, LiDAR data, and field plots can accurately predict fine-scale spatial characterizations of species distributions and tree invasion in the FTE. This study also indicates that sample design can influence spatial patterns of model uncertainty, which needs to be considered if predictive mapping of vegetation and sensitive ecosystems is a component of inventory and monitoring programs.;In chapter three, I focused on quantifying spatiotemporal patterns of subalpine parkland tree invasion in Jefferson Park over the past five decades in relation multi-scale climatic and biophysical controls. Tree occurrence (i.e. tree presence in 2 m plots and grid cells) occurred in 7.75% of study area meadows in 1950 and increased to 34.7% in 2007. Landform types and finer-scale patterns of topography and vegetation structure influenced summer snow depth, which influenced temporal and spatial patterns of tree establishment. Tree invasion rates were higher on debris flow landforms, which had lower summer snow depth than glacial landforms, suggesting potentially rapid treeline responses to disturbance events. Tree invasion rates were strongly associated with reduced annual snow fall on glacial landforms, but not on debris flows. Tree establishment was spatially constrained to micro sites with high topographic positions and close proximity to overstory canopy, site conditions associated with low summer snow depth. Seed source limitations placed an additional species-specific spatial constraint on where trees invaded meadows. Climate and topography had an interactive effect, with trees establishing on higher topographic positions during both high snow/low temperature and low snow/high temperature periods, but had greater than expected establishment on lower topographic positions during low snow/high temperature periods. Within the context of larger landform types, topography and proximity to overstory trees constrained where trees established in the meadows, even during climate periods with higher temperatures and lower snowfall. Results of this study suggest large scale climate-driven models of vegetation change may overestimate treeline movement and meadow invasion, because they do not account for biophysical controls limiting tree establishment at multiple spatial scales.;In chapter four, I used field data and analyses from chapter 3 to parameterize a spatially and temporally explicit statistical model of fine-scale tree invasion within 130 ha of the Jefferson Park study area. The model incorporated both the climatic and biophysical controls found in chapter 3 to influence tree invasion. Model outputs of historical area, spatial distributions, and spatial clustering of tree invasion generally agreed with independent validation, and suggest biotic interactions due to young tree establishment facilitation are important on glacial landforms but not debris flows. Simulations of future scenarios indicated meadow declined to 36 to 43% of the study area by 2064. Projected meadow area declined with reduced annual snow fall, but not under prolonged high and low snow fall periods. Meadows persisted under all future scenarios in 2064. This model suggests subalpine meadows may significantly decline under climate warming, but will still persist in 2064. (Abstract shortened by UMI.)...
Keywords/Search Tags:Tree, Subalpine, Vegetation, Jefferson park, Patterns, Meadow, Climate, FTE
Related items