Font Size: a A A

Reversible Phosphorylation Of Rpn1 Regulates 26S Proteasome Assembly And Function

Posted on:2021-04-29Degree:DoctorType:Dissertation
Country:ChinaCandidate:X Y LiuFull Text:PDF
GTID:1360330620973328Subject:Cell biology
Abstract/Summary:PDF Full Text Request
The fundamental importance of the 26 S proteasome in health and disease suggests that its function must be finely controlled,and yet our knowledge about proteasome regulation remains limited.Post-translational modifications,especially phosphorylation,of proteasome subunits have been shown to impact proteasome function through different mechanisms,although the vast majority of proteasome phosphorylation events have not been studied.Here,we have characterized one of the most frequently detected proteasome phosphosites,namely Ser361 of Rpn1,a base subunit of the 19 S regulatory particle.Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry,we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity,impairs cell proliferation,and causes oxidative stress as well as mitochondrial dysfunction.A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation,while its level is reversibly controlled by the proteasome-resident phosphatase,UBLCP1.Mechanistically,Rpn1-S361 phosphorylation is required for proper assembly of the 26 S proteasome,and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2,one of the first steps of 19 S base assembly.These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
Keywords/Search Tags:proteasome, phosphorylation, Rpn1, UBLCP1, PIM1/2/3
PDF Full Text Request
Related items