Font Size: a A A

Studies On Anti-tumor Effects And Molecular Mechanisms Of Shikonin In Thyroid Cancer Cells

Posted on:2018-12-24Degree:DoctorType:Dissertation
Country:ChinaCandidate:Q YangFull Text:PDF
GTID:1314330533451683Subject:Internal Medicine
Abstract/Summary:PDF Full Text Request
Context:Shikonin,which is an active naphthoquinone isolated from traditional Chinese herbal medicine Zi Cao,has been recently developed to use as an antitumor agent in colorectal cancer,melanoma,leukemia,breast cancer,and hepatocellular cancer.However,its antitumor effect in thyroid cancer remains largely unknown.Objectives:The aim of the study was to test the therapeutic potential of shikonin for thyroid cancer and explore the mechanisms underlying antitumor effects of shikonin.Experimental Design:We examined the effects of shikonin on proliferation,cell cycle,apoptosis,migration,invasion and xenograft tumor growth in thyroid cancer cells and the effect of shikonin on proliferation of primary thyroid cancer cells.Results:Shikonin inhibited thyroid cancer cell proliferation in a dose-and time-dependent manner and induced cell cycle arrest.Moreover,shikonin induced cell apoptosis through reactive oxygen species(ROS)-mediated DNA damage and the activation of p53 signaling pathway.Our data also showed that shikonin dramatically inhibited thyroid cancer cell migration and invasion by suppressing epithelial-mesenchymal transition(EMT)and downregulating expression of Slug,MMP-2,-9 and-14.Further elucidation of the mechanisms involved revealed that shikonin markedly repressed the phosphorylation of Erk and Akt,and activated the p16/Rb pathway in thyroid cancer cells.Growth of xenograft tumors derived from thyroid cancer cell line FTC133 in nude mice was significantly inhibited by shikonin.Importantly,we did not find the effect of shikonin on liver function in mice.Conclusion:We for the first time demonstrated that shikonin is a potentially effective antitumor agent for thyroid cancers.
Keywords/Search Tags:Thyroid cancer, shikonin, PI3K/Akt pathway, MAPK pathway, p16/Rb pathway, Reactive oxygen species(ROS)
PDF Full Text Request
Related items