Font Size: a A A
Keyword [a posteriori error estimation]
Result: 1 - 20 | Page: 1 of 1
1. A Posteriori Error Estimation For FEM Of Nonlinear Coupled Thermal Problem
2. Anisotropic A Posteriori Error Estimation By Local Reconstruction And Adaptive Computation
3. A Posteriori Error Estimation For Signorini Problem
4. A Posteriori Error Estimation For Fourth Order Nonconforming Elements
5. A Posteriori Error Estimation Of Finite Element Solutions For Burgers Equation And Its Application
6. A Posteriori Error Estimates For Variational Inequalities Of The Second Kind
7. Goal Oriented A Posteriori Error Estimation And Convergent Adaptive Finite Element Method For Elliptic Equation
8. Gradient Recovery Based A Posteriori Error Estimation And The Adaptive Finite Element Method For Semilinear Elliptic Equations
9. Recovery Type A Posteriori Error Estimation For Adaptive Virtual Element Method
10. Convergence Analysis Of Adaptive Moving Grid Methods For Sever Classes Of Singularly Perturbed Problems
11. Multiscale a posteriori error estimation and mesh adaptivity for reliable finite element analysis
12. Time-Space Adaptive Finite Element Method For Phase Field Equations
13. Adaptive Moving Grid Methods For Singularly Perturbed Volterra Integro-differential Equations
14. A Posteriori Error Estimation Of Rotating Bilinear Finite Volume Method For Elliptic Equations
15. Recovery-type A Posterior Error Estimation And Adaptive Algorithm Of Finite Element Method For Linear Schr(?)dinger Equation
16. Gradient Recovery Based A Posteriori Error Estimation Of Discontinuous Galerkin Methods For Biharmonic Equation
17. Recovery Type A Posteriori Error Estimation Of Interior Penalty Discontinuous Galerkin Method For Allen-Cahn Equation
18. Gradient Recovery Type A Posteriori Error Estimates For The Time-dependent PNP Equations And Its Application
19. Recovery-Based A Posteriori Error Estimation For Elliptic Interface Problems Based On Immersed Finite Element Methods
20. Residual-Based A Posteriori Error Estimation For Elliptic Interface Problems Approximated By Immersed Finite Element Methods
  <<First  <Prev  Next>  Last>>  Jump to