Font Size: a A A

Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

Posted on:2001-06-16Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Cai, JinFull Text:PDF
GTID:1468390014457379Subject:Engineering
Abstract/Summary:
Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region.; As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations, which complements the DCIV method.; Two fundamental theories of interband tunneling are developed to correlate with the VGB dependence of drain/base p/n junction currents: (1) direct tunneling at the drain/base junction perimeter with and without the quantization effects in the base surface accumulation layer, and (2) interface trap assisted tunneling in the gate/drain overlap region. The second theory gives better correlation, which is further supported by the DCIV peaks originated from interface traps in the gate/drain overlap region.
Keywords/Search Tags:Interface trap, Tunneling, Gate/drain overlap region, Recombination, MOS, Oxide, DCIV, P/n junction
Related items