Font Size: a A A

Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writin

Posted on:2018-01-14Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Ng, Jason ClementFull Text:PDF
GTID:1448390002996539Subject:Electrical engineering
Abstract/Summary:
Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window.;My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 --11/W-cm--2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0:020 +/- 0:002 pm/V was measured.;The results collectively demonstrate the versatility of femtosecond laser additive and subtractive fabrication and opens up the development of integrated nonlinear applications and photonic devices for future lab-on-a-chip and lab-in-a-fiber devices.
Keywords/Search Tags:Photonic devices, Femtosecond laser, Fused silica, Fabrication, Nonlinear, Process
Related items