| Small Josephson junctions are fascinating quantum systems with numerous potential applications, especially in the still infant field of quantum computation. In the first part of the thesis. I have studied some of the quantum aspects of these systems. Specifically, I have investigated their interactions with a resonant cavity, the Berry phase of a superconducting nanocircuit, and some properties of small Josephson junction arrays. I found that at specific values of the gate voltage of a Cooper pair box, there will be a strong coupling between the Josephson junction and the cavity mode; in this case the junction behaves as a two level atom. I also, verified that if there are N identical junctions in the cavity and are tuned on resonance, the cavity-junction interaction is enhanced by a factor . This behavior is a clear sign of a cooperative phenomena. Also I found that if a Josephson junction is on resonance with one of the modes of a two-mode cavity, there will be a coupling between the two modes and ultimately a frequency-up or down conversion. I have also studied the spin-wave-like excitations of a disordered two and three dimensional array of small Josephson junctions. I consider a simple form of diagonal disorder and solve for the spin-wave spectral functions using the coherent potential approximation. Finally, using quantum Monte Carlo techniques, I have constructed the phase diagram of a disordered two dimensional array of small Josephson junctions.; In the second part of the thesis, I have studied the dynamics of vortices in a clean layered high-temperature superconductor. I found that the c-axis conductivity at nonzero frequencies shows a strong but not divergent increase as the vortex lattice freezing temperature is approached from above, followed by an apparently discontinuous drop. The discontinuity is consistent with the occurrence of a first-order freezing of the vortex lattice. The calculated equilibrium properties agree with previous Monte Carlo studies of the system. |