Font Size: a A A

Multimode dynamics in quantum cascade lasers: From coherent instability to mode locking

Posted on:2010-10-20Degree:Ph.DType:Thesis
University:Harvard UniversityCandidate:Wang, Christine Yi-TingFull Text:PDF
GTID:2448390002982600Subject:Physics
Abstract/Summary:
Quantum Cascade Lasers (QCLs) are unipolar semiconductor lasers based on intersubband transitions in quantum wells. Since their invention in 1994, these lasers have undergone tremendous improvement, and have become the most prominent coherent light source in the mid-infrared and terahertz spectral ranges. However, the understanding of multimode regimes in QCLs is still in its infancy, and there has not been much effort toward generating ultrafast pulses from QCLs. The recent development of low loss, high power QCLs enables the study of those previously under-investigated aspects. This thesis can be divided into two main parts. In the first part, we study the multimode regimes in QCLs. We find that QCLs, because of their extremely fast gain recovery time, differ from diode lasers in multimode operation. While a saturable absorber can often lead to self mode-locking in lasers with long gain recovery compared to the cavity round-trip time, in QCLs it lowers the threshold of a coherent multimode instability, which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago. The main experimental signature of RNGH instability is a splitting corresponding to twice the Rabi frequency in optical spectrum. In QCLs this coherent instability is enhanced due to the large Rabi frequency compared to the relaxation rates. We have also shown that spatial hole burning, which is not so readily observable in diode lasers, also plays an important role in QCLs. Both experimental data and simulations based on Maxwell-Bloch equations are presented. In the second part of this thesis, we demonstrate active mode-locking in QCLs. The stable mode-locked pulse train was generated by actively modulating the pumping current of a small section on a QCL. Stable mode locking was confirmed by second-order interferometric autocorrelation measurements, and a FWHM of 3 ps and about 0.5 pJ per pulse were deduced from the autocorrelation traces. The system is also simulated using Maxwell-Bloch equations incorporated with a modulation term. We anticipate our results to be a big step toward a compact, electrically-pumped source generating ultrashort pulses in the mid-infrared and terahertz ranges.
Keywords/Search Tags:Lasers, Qcls, Multimode, Instability, Coherent
Related items