Font Size: a A A

ARTMAP and orthonormal basis function neural networks for pattern classification

Posted on:2007-05-29Degree:Ph.DType:Dissertation
University:Boston UniversityCandidate:Shock, Byron MitchellFull Text:PDF
GTID:1458390005485766Subject:Statistics
Abstract/Summary:
This dissertation investigates neural network approaches to pattern classification. One application considered is the classification of land use change in the Nile River delta between 1984 and 1993 from ten Landsat Thematic Mapper (Landsat TM) images acquired during this period. Other applications, including image segmentation, letter recognition, and prediction of variables from census data, are represented by the standardized DELVE (Data for Evaluating Learning in Valid Experiments) machine learning database.; An ARTMAP (Adaptive Resonance Theory Map) neural network system is developed for the land use change classification task. Cross-validation is used to enable design decisions and to enable model fitting to be done without regard to data in test partitions. The training of voting ARTMAP systems on brightness-greenness-wetness (BGW) data for multiple dates and location data results in performance competitive with previously used expert systems.; Orthonormal basis function classification methods are extended to make them appropriate for multidimensional problems. These methods share the multilayer perceptron architecture common to many neural networks. A layer of basis functions transforms the data prior to classification. Stopping rules are used to determine which basis functions to include in a model to minimize the expected mean integrated squared error (MISE). To perform stopping when using the discriminant function of Devroye et al. (1996), an appropriate MISE estimator is developed. Linear transformations to rotate data and improve multiple classification results are investigated using development benchmarks from the DELVE suite. Orthonormal basis function neural network classifiers using these principles are developed and tested along with standard pattern classification techniques on the DELVE suite. Orthonormal basis function systems appear to be well suited for some multidimensional problems. These systems, along with benchmark classifiers, are also applied to the Nile River delta dataset. Although orthonormal basis function systems are an appropriate choice for this task, the best performance observed on this dataset is that of linear discriminant analysis (LDA) applied to multitemporal data.
Keywords/Search Tags:Orthonormal basis function, Classification, Neural network, Pattern, Data
Related items