Font Size: a A A

O-glycopeptide analogues of enkephalin: FMOC-amino acid glycoside synthesis, solid-phase glycopeptide synthesis and optimizations, and pharmacology

Posted on:2000-09-15Degree:Ph.DType:Thesis
University:The University of ArizonaCandidate:Mitchell, Scott AllanFull Text:PDF
GTID:2461390014465602Subject:Chemistry
Abstract/Summary:
The synthesis of a series of N-9-fluorenylmethoxycarbonyl (N-FMOC) protected amino acid glycosides is reported. These (1-2)-trans glycosides came directly from Koenigs-Knorr type glycosylations under Hanessian’s silver triflate conditions, except for the synthesis of N-acetylgalactosamine FMOC amino acid in which silver perchlorate conditions were used to promote α-glycoside formation. The effect of D-amino acid aglycones was investigated under glucosylation conditions, and a yield dependence on amino protection was seen in the enantiomers of threonine. Due to this match vs. mismatch dichotomy, both O’Donnell Schiff bases and FMOC-amino aglycones were used in the subsequent glycosylation reactions. Glycosides were made using the monosaccharides xylose, mannose, glucose, galactose, N-acetylglucosamine, N-acetylgalactosamine, and disaccharides lactose [galactose-β-(1-4)-glucose], cellobiose [glucose-β-(1-4)-glucose] and melibiose [galactose-α-(1-6)-glucose]. All glycosides were converted to their respective FMOC-amino acid forms for direct use in solid-phase glycopeptide synthesis (SPGPS) using established methodology. A strategy into the synthesis of an FMOC-amino acid trisaccharide of Lewisx (Lex) was also investigated in an effort to expand on the established glycoside methodology. Preliminary work with D-glucosamine and L-fucose is reported.;Our synthetic rationale was based on retaining the peptide pharmacophore or message sequence constant as DCDCE (D-cys2,5-enkephalin) with a serine-glycine tether, and making changes only in the environment of the amino-acid glycoside. Changes in amino acid, amino acid chirality, and in the sugar moiety itself would provide a stereochemical investigation into the requisite orientation and electronics for optimum blood-brain barrier (BBB) penetration, opiate receptor binding, and analgesia. Several glycopeptides were synthesized, and all were purified in both reduced and oxidized forms (if containing cysteine). A highly optimized glycopeptide synthetic strategy has been developed and will be presented and critiqued.;Pharmacological analysis involving serum stability studies, BBB-penetration studies, GPI/MVD physicochemical studies and μ/δ-opiate receptor studies were completed on all glycopeptides. SAM-1095, the most potent of the glycopeptides synthesized, was resynthesized on a large scale, and this compound was assessed for in vivo pharmacology, along with the non-glycosylated version SAM-995. Preliminary results demonstrate an analgesic effect similar to that of the narcotic morphine. Assessment of all pharmacology will afford a platform for future SAR-based glycopeptide investigations.
Keywords/Search Tags:Amino acid, Synthesis, Glycopeptide, Glycoside
Related items