Font Size: a A A

Towards adaptive anomaly detection systems using Boolean combination of hidden Markov models

Posted on:2012-04-19Degree:D.EngType:Thesis
University:Ecole de Technologie Superieure (Canada)Candidate:Khreich, WaelFull Text:PDF
GTID:2458390011953715Subject:Engineering
Abstract/Summary:
Anomaly detection monitors for significant deviations from normal system behavior. Hidden Markov Models (HMMs) have been successfully applied in many intrusion detection applications, including anomaly detection from sequences of operating system calls. In practice, anomaly detection systems (ADSs) based on HMMs typically generate false alarms because they are designed using limited representative training data and prior knowledge. However, since new data may become available over time, an important feature of an ADS is the ability to accommodate newly-acquired data incrementally, after it has originally been trained and deployed for operations. Incremental re-estimation of HMM parameters raises several challenges. HMM parameters should be updated from new data without requiring access to the previously-learned training data, and without corrupting previously-learned models of normal behavior. Standard techniques for training HMM parameters involve iterative batch learning, and hence must observe the entire training data prior to updating HMM parameters. Given new training data, these techniques must restart the training procedure using all (new and previously-accumulated) data. Moreover, a single HMM system for incremental learning may not adequately approximate the underlying data distribution of the normal process, due to the many local maxima in the solution space. Ensemble methods have been shown to alleviate knowledge corruption, by combining the outputs of classifiers trained independently on successive blocks of data.;This thesis makes contributions at the HMM and decision levels towards improved accuracy, efficiency and adaptability of HMM-based ADSs. It first presents a survey of techniques found in literature that may be suitable for incremental learning of HMM parameters, and assesses the challenges faced when these techniques are applied to incremental learning scenarios in which the new training data is limited and abundant. Consequently, An efficient alternative to the Forward-Backward algorithm is first proposed to reduce the memory complexity without increasing the computational overhead of HMM parameters estimation from fixed-size abundant data. Improved techniques for incremental learning of HMM parameters are then proposed to accommodate new data over time, while maintaining a high level of performance. However, knowledge corruption caused by a single HMM with a fixed number of states remains an issue. To overcome such limitations, this thesis presents an efficient system to accommodate new data using a learn-and-combine approach at the decision level. When a new block of training data becomes available, a new pool of base HMMs is generated from the data using a different number of HMM states and random initializations. The responses from the newly-trained HMMs are then combined to those of the previously-trained HMMs in receiver operating characteristic (ROC) space using novel Boolean combination (BC) techniques. The learn-and-combine approach allows to select a diversified ensemble of HMMs (EoHMMs) from the pool, and adapts the Boolean fusion functions and thresholds for improved performance, while it prunes redundant base HMMs. The proposed system is capable of changing its desired operating point during operations, and this point can be adjusted to changes in prior probabilities and costs of errors.;During simulations conducted for incremental learning from successive data blocks using both synthetic and real-world system call data sets, the proposed learn-and-combine approach has been shown to achieve the highest level of accuracy than all related techniques. In particular, it can sustain a significantly higher level of accuracy than when the parameters of a single best HMM are re-estimated for each new block of data, using the reference batch learning and the proposed incremental learning techniques. It also outperforms static fusion techniques such as majority voting for combining the responses of new and previously-generated pools of HMMs. Ensemble selection techniques have been shown to form compact EoHMMs for operations, by selecting diverse and accurate base HMMs from the pool while maintaining or improving the overall system accuracy. Pruning has been shown to prevents pool sizes from increasing indefinitely with the number of data blocks acquired over time. Therefore, the storage space for accommodating HMMs parameters and the computational costs of the selection techniques are reduced, without negatively affecting the overall system performance. The proposed techniques are general in that they can be employed to adapt HMM-based systems to new data, within a wide range of application domains. More importantly, the proposed Boolean combination techniques can be employed to combine diverse responses from any set of crisp or soft one- or two-class classifiers trained on different data or features or trained according to different parameters, or from different detectors trained on the same data. In particular, they can be effectively applied when training data is limited and test data is imbalanced.
Keywords/Search Tags:Data, HMM, System, Anomaly detection, Using, Boolean combination, Hmms, Incremental learning
Related items