Font Size: a A A

Study of the Electromagnetic Properties of Textiles: Development of Textile Antennas for Energy Harvestin

Posted on:2018-12-12Degree:Ph.DType:Thesis
University:Universidade da Beira Interior (Portugal)Candidate:Loss, CarolineFull Text:PDF
GTID:2448390005958264Subject:Textile research
Abstract/Summary:
The current socio-economic developments and lifestyle trends indicate an increasing consumption of technological products and processes, powered by emergent concepts, such as Internet of Things (IoT) and smart environments, where everything is connected in a single network. For this reason, wearable technology has been addressed to make the person, mainly through his clothes, able to communicate with and be part of this technological network.;Wireless communication systems are made up of several electronic components, which over the years have been miniaturized and made more flexible, such as batteries, sensors, actuators, data processing units, interconnectors and antennas. Turning these systems into wearable systems is a demanding research subject. Specifically, the development of wearable antennas has been challenging, because they are conventionally built on rigid substrates, hindering their integration into the garment. That is why, considering the flexibility and the dielectric properties of textile materials, making antennas in textile materials will allow expanding the interaction of the user with some electronic devices, by interacting through the clothes. The electronic devices may thus become less invasive and more discrete.;Textile antennas combine the traditional textile materials with new technologies. They emerge as a potential interface of the human-technology-environment relationship. They are becoming an active part in the wireless communication systems, aiming applications such as tracking and navigation, mobile computing, health monitoring and others. Moreover, wearable antennas have to be thin, lightweight, of easy maintenance, robust, and of low cost for mass production and commercialization.;In this way, planar antennas, the microstrip patch type, have been proposed for garment applications, because this type of antenna presents all these characteristics, and are also adaptable to any surface. Such antennas are usually formed by assembling conductive (patch and ground plane) and dielectric (substrate) layers. Furthermore, the microstrip patch antennas, radiate perpendicularly to a ground plane, which shields the antenna radiation, ensuring that the human body is exposed only to a very small fraction of the radiation.;To develop this type of antenna, the knowledge of the properties of textile materials is crucial as well as the knowledge of the manufacturing techniques for connecting the layers with glue, seam, adhesive sheets and others. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires thus the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates.;In general, textiles present a very low dielectric constant, ?r, that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore, it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects.;To explain some influences of the textile material on the performance of the wearable antennas, this PhD Thesis starts presenting a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. Further, manufacturing techniques of the textile antennas are described.
Keywords/Search Tags:Textile, Antennas, Development
Related items