Font Size: a A A

Modeling of pulse-echo inspections of multi-layer panels containing delaminations

Posted on:2011-08-15Degree:M.SType:Thesis
University:Iowa State UniversityCandidate:Richter, Nathaniel LawrenceFull Text:PDF
GTID:2448390002467861Subject:Engineering
Abstract/Summary:
To meet the needs of counter insurgency operations the armor of tanks need to be lighter. This is accomplished by using a combination of materials: metals, composites, and ceramics. This multi-material composite armor using any combination of the above materials will need to be inspected for manufacturing error, shipping damage, and combat damage. Nondestructive inspection, particularly ultrasonic inspection, has a long history of successfully inspecting thick composite structures.;To more easily develop inspection plans for many layered composites a computational model would be of use. A model of this type would need to have the ability to account for multiple material types and flaws that are larger than the beam size. Also, as a result of armor thickness any model would need to consider attenuation and effects of focused transducers.;This was accomplishing by extending the Thompson-Gray Measurement Model for use with multiple layers at normal incidence to the transducer and large planar defects parallel to the layers. Material values of the armor and the characteristics of the transducers were determined for use in the model. The model results are compared to experimentally collected data to show agreement. The model is then used to determine the requirements of a new inspection plan through varying the frequency and focal length of the transducers.;The defect reflection amplitudes for 5 MHz with the focal lengths in water of 7.5, 8.5, and 9.5 inches are 0.55178, 0.75270, and 0.44836. The same for 10 MHz are 0.12474, 0.21425, and 0.10637.;The 8.5 in focal length also is the equivilent thickness in water for the material leading to the defect interface. This focal length would, from theory, cause the greatest amplitude from the defect. This is supported by the results in that the highest amplitude occurs at 8.5 inches for both sets of frequencies. It is also evident that the response at 5 MHz is greater than that at 10 MHz. As such, the 5 MHz transducer with an 8.5 inch focal length is nominal for this inspection.
Keywords/Search Tags:Inspection, Model, Focal length, Mhz, Armor, Need
Related items