Font Size: a A A

Chemoenzymatic synthesis of heparan sulfate

Posted on:2011-04-08Degree:Ph.DType:Thesis
University:The University of North Carolina at Chapel HillCandidate:Liu, RenpengFull Text:PDF
GTID:2441390002462212Subject:Chemistry
Abstract/Summary:
Heparan sulfate (HS) participates in a variety of biological functions and has been exploited for its ability to be utilized as a HS-based drug. Chemical synthesis of HS remains extremely challenging. Previous research has proven the feasibility of using a HS enzyme-based approach to synthesize HS structures with unique biological activities. Our central hypothesis is that all subsequent modifications following N-sulfation during HS biosynthesis are governed by the number and position of the GlcNS residue. In this dissertation, a fluorous affinity tag-assisted chemoenzymatic synthesis technique has been developed to build a HS octasaccharide library with defined N-sulfo glucosamine (GlcNS) positions. The HS backbone was synthesized by heparosan biosynthetic enzymes. N-acetyl glucosaminyl transferase from E.coli K5 (KfiA) was used to transfer either GlcNAc or GlcNTFA (N-trifluoroacetylglucosamine) residues to the growing chain. Heparosan synthase from pasteurella (PmHS2) was used to transfer the GlcUA residues. A selective de-trifluoroacetylation was performed because under these conditions, the GlcNTFA is labile and will be converted to glucosamine (GlcNH2) while the GlcNAc residue remains intact. The resultant GlcNH2 is then converted to a GlcNS residue by N-sulfotransferase (NST). N-sulfo-6- O-sulfo HS backbones with different 6-O-sulfation patterns and different sizes were also prepared. Furthermore, we prepared oligosaccharide capable of binding to antithrombin (AT), which correlates to HS anticoagulant activity. In this study, an AT-binding dodecasaccharide was prepared and its structure was proven. The continuation of this dissertation will allow us to not only investigate enzymatic approaches to synthesize HS-based anticoagulant drugs, but also develop a general method for synthesizing structurally defined HS oligosaccharides that could aid in the discovery of novel HS-based therapeutic agents.
Keywords/Search Tags:Synthesis
Related items
Green chemistry in pyrrole synthesis. I. Solvent effect in Barton-Zard pyrrole synthesis: An improved synthesis of 3,4-dialkyl-1H-pyrrole-2-carboxylates. II. A novel route for the synthesis of pharmaceutically important pyrrole derivatives
Part I: Design, synthesis, and reactivity of 1-hydrazinodienes for use in organic synthesis Part II: Studies toward a synthesis of the antibiotic platensimycin
Manganese(III)-based oxidative cyclizations: Formal synthesis of 15-acetoxypallescensin A. Synthesis of hindered guanidines. Completion of the total synthesis of martinellic acid
Synthesis, Characterization And Luminescence Properties Of Environmental Functional Material β-NaYF4 Doped With Rare Earth
Part I: The total synthesis of (+/-)-securinine and (+/-)-allosecurinine and synthetic strategies for a second generation synthesis of the securinega alkaloids and Part II: The use of (+)-K252a in the semi-synthesis of indolocarbazole natural products and
New methods and strategies for heterocycle synthesis: Progress toward the total synthesis of upenamide and the total synthesis of (+)-5-epiindolizidine 167B and indolizidine 223AB
Synthesis of side chain-modified iodothyronines. Synthesis and structure-activity relationships (SARS) of galanthamine derivatives. Total synthesis of (+)-valyldetoxinine. Synthesis and mechanism of cyclic acetal and ketal formation in pentono-1,4-lactone
The application of asymmetric catalysis to the synthesis of natural products: A total synthesis of (-)-tubulosine, progress towards a total synthesis of (+)-reserpine, and a total synthesis of (+)-peloruside A
Cyclobutanes in organic synthesis: Lewis acid-promoted ketene-alkene [2+2] cycloadditions, total synthesis of gracilioether F, and collaborative total synthesis of hippolachnin A
10 A ring-closing metathesis/Diels-Alder approach to the synthesis of the eunicellin diterpenes: Application to the total synthesis of ophirin B and partial synthesis of astrogorgin