Font Size: a A A

Development of novel technologies to enhance performance and reliability of III-Nitride avalanche photodiodes

Posted on:2015-08-23Degree:Ph.DType:Dissertation
University:State University of New York at AlbanyCandidate:Suvarna, Puneet HarischandraFull Text:PDF
GTID:1478390020951995Subject:Engineering
Abstract/Summary:
Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs.;To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices.;A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in reducing the dark-current and trap states at sidewalls by close to an order of magnitude, leading to improved APD performance. Development and implementation of an ion implantation based contact edge termination technique for III-N APDs that helps prevent premature breakdown from the contact edge of the devices, has further lead to improved reliability. Finally novel improved III-N APD device designs are proposed using preliminary experiments and numerical simulations for future implementations.
Keywords/Search Tags:III-N, Novel, Reliability, Avalanche, APD
Related items