Font Size: a A A

Localized heating and bonding technique for MEMS packaging

Posted on:2001-12-29Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Cheng, Yu-TingFull Text:PDF
GTID:1468390014453914Subject:Engineering
Abstract/Summary:
Localized heating and bonding techniques have been developed for hermetic and vacuum packaging of MEMS devices, including silicon-to-glass fusion, silicon-gold eutectic, and silicon-to-glass bonding using PSG, indium, aluminum, and aluminum/silicon alloy as the intermediate layer. Line shaped phosphorus-doped polysilicon or gold films are used as resistive microheaters to provide enough thermal energy for bonding. The bonding processes are conducted in the common environment of room temperature and atmospheric pressure and can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 10 minutes. About 5 watts of input power is needed for localized bonding which can seal a 500 x 500 mum2 area. The total input power is determined by the thermal properties of bonding materials, including the heat capacity and latent heat. Two important bonding results are obtained: (1) The surface step created by the electrical interconnect line can be planarized by reflowing the metal solder. (2) Small applied pressure, less than 1MPa, for intimate contact reduces mechanical damage to the device substrate. This new class of bonding technology has potential applications for MEMS fabrication and packaging that require low temperature processing at the wafer level, excellent bonding strength and hermetic sealing characteristics.; A hermetic package based on localized aluminum/silicon-to-glass bonding has been successfully fabricated. Less than 0.2 MPa contact pressure with 46mA input current for two parallel 3.5mum wide polysilicon on-chip microheaters can create as high as 700°C bonding temperature and achieve a strong and reliable bond in 7.5 minutes. Accelerated testing in an autoclave shows some packages survive more than 450 hours under 3 atm, 100%RH and 128°C. Premature failure has been attributed to some unbonded regions on the failed samples. The bonding yield and reliability have been improved by increasing bonding time and applied pressure.; Finally, vacuum encapsulation of folded-beam comb-drive mu-resonators used as pressure monitors has been demonstrated using localized aluminum/silicon-to-glass bonding. With 3.4 watt heating power, ∼0.2MPa applied contact pressure, and 90 minutes wait time before bonding, vacuum encapsulation can be achieved with the same vacuum level as the packaging environment which is about 25 mtorr. Metal coating used as diffusion barrier and a longer wait time before bonding are used to improve the vacuum level of the package. Long-term measurement of the Q of un-annealed vacuum-packaged mu-resonators, illustrates stable operation after 19 weeks.
Keywords/Search Tags:Bonding, MEMS, Localized, Vacuum, Heating, Packaging
Related items