Font Size: a A A

Spatial and temporal influences of water quality on zooplankton in Lake Texoma (Texas, Oklahoma)

Posted on:2001-07-22Degree:Ph.DType:Dissertation
University:University of North TexasCandidate:Franks, Jessica LauraFull Text:PDF
GTID:1461390014952598Subject:Biology
Abstract/Summary:
Seventy-one aquatic species including the copepodids and nauplii were identified from Lake Texoma from August 1996 to September 1997. Zooplankton community structure, abundance and spatial and temporal distributions were compared among five lake zones delineated a priori based on chloride concentration. The zones, in order of decreasing chloride concentration, are the Red River zone (RRZ), Red river Transition zone (RRTZ), Main Lake zone (MLZ), Washita River Transition zone (WRTZ) and Washita River zone (WRZ). Bray Curtis Similarity Index showed community structure was most similar in the two Red River arm zones, the two Washita River arm zones and the MLZ. Zooplankton abundance was greatest in the Red River arm (312 org/L), intermediate in the Washita River arm (217 org/L) and least in the Main Lake body (103 org/L). A significant increase in the abundance of a deformed rotifer, Keratella cochlearis, was observed mainly in the Red River arm during a second study from March 1999 to June 1999. Seasonal dynamics, rather than spatial dynamics, were more important in structuring the zooplankton community, especially in the two river arms. Spatial variance was solely attributed to station and zone effects independent of time for a few crustacean species and many of the water quality parameters supporting the presence of longitudinal gradients of differing water quality. Three independent models (Red River arm, Washita River arm, Main Lake body) rather than a single model for the entire reservoir, best describe patterns in the zooplankton community and its relationship to seasonal, physical and chemical factors. Statistical power, sample size and taxonomic resolution were examined. When monitoring seasonal and annuals trends in abundance, the greatest statistical power was achieved by analyzing count data at taxonomic levels above genus. Taxonomic sufficiency was assessed to determine if costs could be reduced for zooplankton identifications. For water quality monitoring purposes only, it is recommended that genus identifications are sufficient if supplemented with quarterly species identifications.
Keywords/Search Tags:Water quality, Zooplankton, Lake, River arm, Species, Spatial
Related items