The Effects of Enhanced Expression of the GluN2B (NR2B) Subunit of the N-methyl-D-aspartate (NMDA) Receptor on Memory in Aged Animals | Posted on:2013-08-07 | Degree:Ph.D | Type:Dissertation | University:Oregon State University | Candidate:Brim, Brenna L | Full Text:PDF | GTID:1454390008967703 | Subject:Molecular biology | Abstract/Summary: | PDF Full Text Request | The first study was designed to determine if increasing GluN2B subunit expression in the frontal lobe would improve memory in aged mice. Mice received bilateral injections of either an adenoviral vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP) (GluN2B vector); an adenoviral vector containing only the cDNA for eGFP (control vector); or vehicle into their frontal lobe. Spatial memory, cognitive flexibility and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression in the frontal lobe, exhibited improved long-term spatial memory, comparable to young mice, in the second day of training. Moreover, a higher concentration of the specific GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B subunit expression, as compared to aged controls. The requirement for greater antagonism in aged mice to block memory performance suggests that the number of GluN2B-containing receptors in their frontal lobe was enhanced and contributed to the improved memory. This study provides suggestive evidence that therapies that enhance GluN2B subunit expression within the aged brain could have the potential to ameliorate age-related memory loss.;The second study was designed to determine if increasing GluN2B subunit expression in the hippocampus would improve or further impair memory in aged mice. This would help to determine if a therapy aimed at enhancing the GluN2B subunit expression or function of GluN2B-containing receptors throughout the aged brain could help ameliorate age-associated memory loss. Mice were injected bilaterally with either the GluN2B vector, a control vector or vehicle into the hippocampus. Spatial memory, cognitive flexibility and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression in the hippocampus, exhibited improved long-term spatial memory, comparable to young mice, early in training. However, there was a trend for impaired memory later in the long-term spatial memory trials. Still, these data suggest that enhancing GluN2B subunit expression in the aged hippocampus could be more beneficial to memory than harmful. In addition, the results of this study suggest that enhancing GluN2B subunit expression in different brain regions may improve memory at different phases of learning. Therefore, therapies that enhance GluN2B subunit expression throughout the aged brain could help ameliorate age-related memory loss.;A third study was developed with the intent of garnering a more global increase in GluN2B subunit expression that was localized to the synapse. Cyclin dependent kinase 5 (Cdk5) enhances endocytosis of the GluN2B subunit-containing NMDA receptors from the synapse. Previous research has shown that inhibiting Cdk5 increases the number of GluN2B subunits at the synapse and within the whole cell and improves memory in young mice. This study was designed to determine if using antisense phosphorodiamidate morpholino oligomers (Morpholinos) to decrease the expression of Cdk5 protein within the brain would improve memory in aged mice. Morpholinos were conjugated to a cell penetrating peptide, which enhances cellular uptake, and delivered bilaterally to the lateral ventricles of both young and aged mice via acute stereotaxic injection. Treatments consisted of equivalent volumes and concentrations of either vehicle, control Morpholino or a Morpholino targeting the mRNA of Cdk5 (Cdk5 Morpholino). Memory was evaluated in the Morris water maze and using a novel object recognition task. Aged mice treated with the Cdk5 Morpholino exhibited improved early acquisition and spatial bias in the long-term spatial memory trials, as well as improved performance overall, compared to control Morpholino-treated aged animals. However, aged mice treated with the Cdk5 Morpholino performed similarly to vehicle-treated aged animals. The presence of the peptide-conjugated Morpholinos within the brain may have worsened performance in the Morris water maze task since control Morpholino-treated animals performed significantly worse than vehicle-treated animals. In concurrence, there was significantly greater gliosis in peptide-conjugated Morpholino-treated animals over vehicle-treated brains, suggesting it was neurotoxic. In contrast, young mice treated with the Cdk5 Morpholino showed impaired early acquisition and spatial bias but a trend for improved later learning in the long-term spatial memory task compared to control Morpholino-treated animals. (Abstract shortened by UMI.). | Keywords/Search Tags: | Memory, Glun2b, Subunit, Expression, Aged, Animals, Study was designed, Treated with the cdk5 morpholino | PDF Full Text Request | Related items |
| |
|