Font Size: a A A

Adaptive Statistical Methods for Microbiome Association Studie

Posted on:2019-11-18Degree:Ph.DType:Dissertation
University:New York UniversityCandidate:Koh, HyunwookFull Text:PDF
GTID:1448390002993215Subject:Biostatistics
Abstract/Summary:
The human microbiome studies have been accelerated by the advances in next-generation sequencing technologies. There has also been increasing interest in discovering microbial taxa that are associated with diverse host phenotypes, environmental factors or clinical interventions. Here, I first describe unique features of microbiome data and the resulting demand for adaptive association analysis which robustly suits different association patterns, while providing valid statistical inferences. Then, I introduce two adaptive microbiome association tests as follows.;My first method, namely, optimal microbiome-based association test (OMiAT), relates microbial composition with continuous (e.g., body mass index) or binary (e.g., disease status) traits. OMiAT is a data-driven adaptive testing method which approximates to the most powerful performance among different candidate tests from the sum of powered score tests (SPU) and microbiome regression-based kernel association test (MiRKAT). I illustrate that OMiAT robustly discovers underlying association signals arising from highly imbalanced microbial abundances and phylogenetic tree structure, while correctly controlling type I error rates. I also propose a way to apply it to fine association mapping of diverse higher-level taxa at different taxonomic levels within a newly introduced microbial taxa discovery framework, microbiome comprehensive association mapping (MiCAM).;My second method, namely, optimal microbiome-based survival analysis (OMiSA), relates microbial composition with survival (i.e., time to event) traits. OMiSA approximates to the most powerful association test within two test domains, 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) and 2) microbiome-based kernel association test for survival traits (MiRKAT-S). I illustrate that OMiSA powerfully discovers underlying associated lineages whether they are rare or abundant and phylogenetically related or not, while correctly controlling type I error rates.;OMiAT and OMiSA are attractive in practice due to the high complexity of microbiome data and the unknown true nature of the state. MiCAM also provides a hierarchical microbiome association map through a breadth of taxonomic levels, which can be used as a guideline for further investigation on the roles of discovered taxa in human health or disease.
Keywords/Search Tags:Microbiome, Association, Adaptive, Method, Taxa
Related items