Font Size: a A A

Developing and implementing a high precision setup system

Posted on:2011-03-03Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Peng, Lee-ChengFull Text:PDF
GTID:1444390002466720Subject:Engineering
Abstract/Summary:
The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation.;The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems.;Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow.;As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from the treatment planning system (TPS) has limited adaptive treatments. A reliable and accurate dosimetric simulation using TPS and in-house software in uncorrected errors has been developed. In SRT, the calculated dose deviation is compared to the original treatment dose with the dose-volume histogram to investigate the dose effect of rotational errors.;In summary, this work performed a quality assessment to investigate the overall accuracy of current setup systems. To reach the ideal HPRT, the reliable dosimetric simulation, an effective daily QA program and effective, precise setup systems were developed and validated.
Keywords/Search Tags:System, HPRT, Setup, Daily, Developed, Stereotactic, Dosimetric
Related items