Consumer-driven nutrient recycling in arctic Alaskan Lakes: Controls, importance for primary productivity, and influence on nutrient limitation | | Posted on:2010-12-25 | Degree:Ph.D | Type:Dissertation | | University:Utah State University | Candidate:Johnson, Cody R | Full Text:PDF | | GTID:1443390002974667 | Subject:Biology | | Abstract/Summary: | PDF Full Text Request | | In lakes, fish and zooplankton can be both sources and sinks of nitrogen (N) and phosphorus (P) through the consumption of organic N and P, and subsequent excretion of bioavailable inorganic forms. These source/sink dynamics, known as consumer-driven nutrient recycling (CNR), may, in turn, control the availability of potentially limiting nutrients for algal primary production. In this dissertation I investigate the importance and controls of CNR as a source of inorganic N and P for primary production (Chapter 2). I then examine zooplankton CNR as a mechanism for increasing nutrient mean resident time (MRT) in the mixed layer of lakes (Chapter 3). Finally, I assess whether zooplankton communities dominated by different taxa can affect N versus P deficient conditions for phytoplankton production through differential N and P recycling rates (Chapter 4). Direct excretion of N and P by fish communities was modest in arctic lakes, and accounted for < 4% of the N and P required for primary production. Recycling of N and P by zooplankton communities was relatively high, and the fraction of algal N and P demand supplied by zooplankton CNR ranged from 4--90% for N and 7--107% for P. MRT of 15N, measured in the mixed layer of an arctic lake, was ∼16 days, compared to 14 days predicted by a ecosystem model simulation with zooplankton N recycling and 8 days in a model simulation where zooplankton N recycling was absent. The 75% increase in N MRT between model simulations with and without zooplankton recycling suggests that zooplankton N recycling is an important mechanism for retaining N in lake ecosystems. I observed relatively high negative correlations between precipitation and phytoplankton N (r = -0.33) and P (r = -0.30) deficiencies. I also observed a significant positive correlation (r = 0.42, p = 0.03) between zooplankton communities with higher copepod biomass, relative to cladoceran biomass, and phytoplankton N-deficient conditions. These results suggest that when precipitation is high N and P deficiency is low in the phytoplankton. When precipitation is low, however, zooplankton communities composed primarily of copepods contribute to N-deficient conditions for phytoplankton production... | | Keywords/Search Tags: | Zooplankton, Lakes, Recycling, Nutrient, Primary, Phytoplankton, Production, Arctic | PDF Full Text Request | Related items |
| |
|