Font Size: a A A

Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

Posted on:2011-09-01Degree:Ph.DType:Dissertation
University:The University of UtahCandidate:Holmes, Heather AFull Text:PDF
GTID:1441390002960102Subject:Atmospheric Chemistry
Abstract/Summary:
Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models).;This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on comparing two gaseous dry deposition models to determine the fluxes of gaseous elemental mercury and reactive gaseous mercury using the measured concentrations and calculated deposition velocities for each species. Results indicate a large dependence on coupled physical, chemical and biological interactions for atmospheric processes, signifying the need for interdisciplinary collaboration.
Keywords/Search Tags:Chemical, Atmospheric, Pollutants, Air, Physical
Related items