Font Size: a A A

The Southern Hemisphere quasi-stationary eddies and their relationship with Antarctic sea ice

Posted on:2010-09-05Degree:Ph.DType:Dissertation
University:University of California, Los AngelesCandidate:Hobbs, William RichardFull Text:PDF
GTID:1440390002474939Subject:Physical oceanography
Abstract/Summary:
The west Antarctic region shows one of the strongest warming trends globally over the late 20th century, whilst much of the Antarctic continent shows little trend or even cooling. Additionally, sea ice reductions in the Antarctic Peninsula region have been balanced by sea ice increases in the Ross Sea region. Despite this heterogeneity, much recent research in the Southern Hemisphere has focused on the approximately zonally-symmetric Southern Annular Mode. In this research, reanalysis and satellite data are analyzed to show that at monthly and annual timescales the zonally asymmetric circulation over the Southern Ocean is dominated by two quasi-stationary anticyclones; a stable western anticyclone approximately located south of New Zealand, and a more variable eastern anticyclone located over the Drake Passage region. Time series describing each anticyclone's strength and longitude, and these time series are used to investigate the physical nature and influence of the anticyclones. The anticyclones are found to have some covariance, and in particular they tend to shift in phase, but their strengths are negatively correlated. Quasi-geostrophic diagnosis indicates that the west anticyclone is maintained by meridional vorticity advection by poleward airflow south of Australia, whereas the east anticyclone is forced by zonal convergence over the Pacific Ocean. The differences in variability and dynamic nature between the anticyclones bring into question the utility of the zonal wave decomposition, which is commonly used in analysis of the Southern Hemisphere zonally asymmetric circulation. It is shown that the quasi-stationary anticyclones influence west Antarctic sea ice in a pattern that resembles the 1st and 3rd principal components of ice variability. The anticyclones have some effect on wind-driven sea ice motion, but the primary mechanism explaining their link to sea ice appears to be meridional thermal advection.
Keywords/Search Tags:Sea ice, Antarctic, Southern hemisphere, Quasi-stationary, Region, Over
Related items